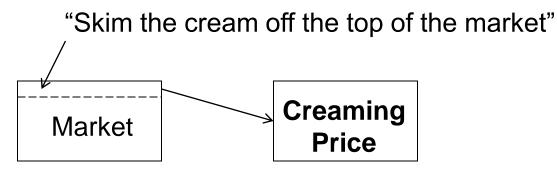

Chapter 8. Price Analytics

Disclaimer:

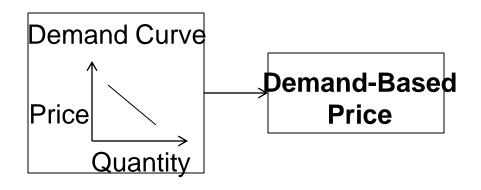
- All images such as logos, photos, etc. used in this presentation are the property of their respective copyright owners and are used here for educational purposes only
- Some material adapted from: Sorger, Stephan. "Marketing Analytics: Strategic Models and Metrics. Admiral Press. 2013.
 - © Stephan Sorger 2016; www.StephanSorger.com; Ch. 8 Price Analytics 1


Outline/ Learning Objectives

Topic	Description
Techniques	Identify different pricing techniques and when to apply them
Assessment	Check profit impact of different prices
B2B & B2C	Explain pricing models for consumer and business markets
Discrimination	Define price discrimination and its effect on profitability

© Stephan Sorger 2016; www.StephanSorger.com; Ch. 8 Price Analytics 1

Pricing Techniques: Creaming/ Skimming

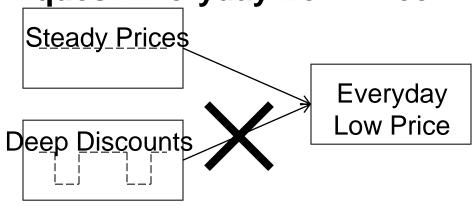


Description: Set prices high during new product/service introduction Example: Panasonic set high prices for its new 3D TVs during launch

Sample Calculations for Acme Example:

Acme can use creaming/skimming for its Acme LUX premium LED light bulb Charge \$30 for Acme LUX light bulb, even though incandescent available for \$1

Pricing Techniques: Demand-Based

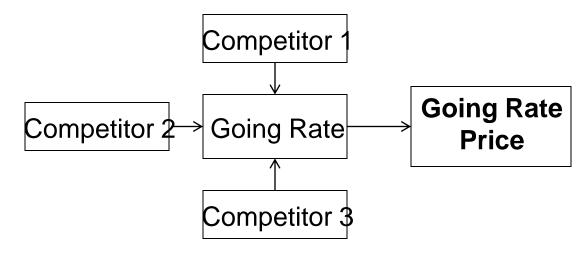


Description: Set prices to maximize profit, based on consumer demand Example: Amazon.com adjusts prices over time to maximize profitability

Sample Calculations for Acme Example:

Acme carefully monitors the quantity of products it sells at different prices Acme has developed a demand curve, which it uses to maximize profits

Pricing Techniques: Everyday Low Price


Description: Set prices consistently low to attract price-sensitive customers Example: Walmart uses everyday low pricing to emphasize good value

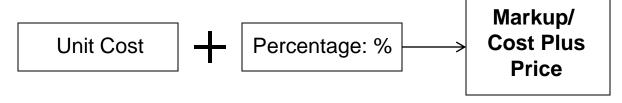
Sample Calculations for Acme Example:

Acme charges everyday low prices for its midline halogen light bulbs

- -Avoids attracting new competitors into replacement light bulb industry
- -Reduces spikes in demand for light bulbs from price promotions

Pricing Techniques: Going Rate

Description: Set prices to align with those of competitors


Example: Gasoline stations in same area often sell gas at similar prices

Sample Calculations for Acme Example:

Acme sells compact fluorescent lamps (CFLs) to home improvement retailers Retailers can choose from many suppliers to purchase CFLs Price set by "going rate" with those suppliers

© Stephan Sorger 2016; www.StephanSorger.com; Ch. 8 Price Analytics 1

Pricing Techniques: Markup/ Cost Plus

Description: Set prices by adding percentage to unit cost

Example: Attorneys, contractors, and consumer packaged goods often use markup

Unit Cost = (Variable Cost) + (Fixed Cost) / (Unit Sales)

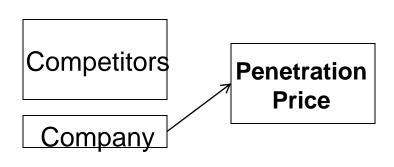
Variable Cost = Cost of labor & materials to manufacture each unit

Fixed costs = Costs that remain fixed as we increase the number of units manufactured Unit Sales = Quantity of units that we sell

Markup Price = (Unit Cost) / (1 - Markup Percentage)

Sample Calculations for Acme Example:

Variable cost = \$10 per bulb; Fixed costs = \$400,000; Unit sales estimate = 40,000

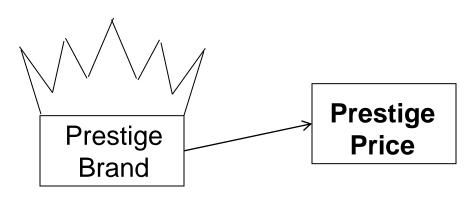

Markup percentage = 20%

Unit cost = (\$10) + (\$400,000) / (40,000) = \$10 + \$10 = \$20 per bulb

Markup Price = (\$20) / (1 - 0.20) = \$25 per light bulb

© Stephan Sorger 2016; www.StephanSorger.com; Ch. 8 Price Analytics 1

Pricing Techniques: Penetration

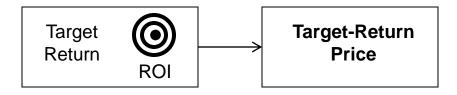


Description: Set prices low to attract new customers and expand market share Example: P&G and Unilever use penetration pricing to expand into new areas

Sample Calculations for Acme Example:

- \$252 million market in CFLs in 2010
- Acme could cut its price for its CFLs to penetration levels to gain market share

Pricing Techniques: Prestige Pricing



Description: Set prices high to signal high quality or status Example: Rolex sets prices very high to align with its luxury brand

Sample Calculations for Acme Example:

Acme could apply prestige pricing to its Acme LUX LED light bulbs Differentiated through its high illumination levels and natural spectrum lighting

Pricing Techniques: Target-Return Pricing

Description: Set prices to achieve company-defined return on investment Example: Industrial supply companies often use target-return pricing

Unit Cost = (Variable Cost) + (Fixed Cost) / (Unit Sales)

Variable Cost = Cost of labor & materials to manufacture each unit

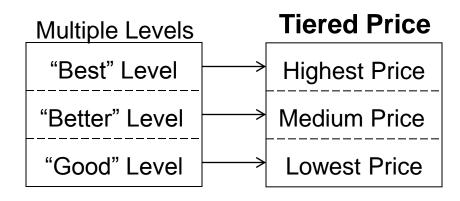
Fixed costs = Costs that remain fixed as we increase the number of units manufactured

Unit Sales = Quantity of units that we sell

Target-Return Price = (Unit Cost) + (Target ROI) * (Investment) / (Unit Sales)

Sample Calculations for Acme Example:

Variable cost = \$10 per bulb; Fixed costs = \$400,000; Unit sales estimate = 40,000

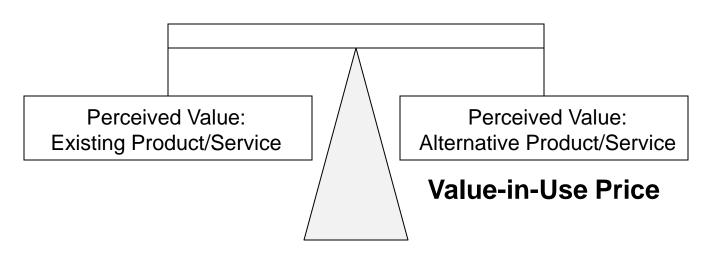

Investment = \$800,000; Target ROI = 20%

Unit cost = (\$10) + (\$400,000) / (40,000) = \$10 + \$10 = \$20 per bulb

Target-Return Price = (\$20) + (20%) * (\$800,000) / (\$40,000) = \$24

© Stephan Sorger 2016; www.StephanSorger.com; Ch. 8 Price Analytics 1

Pricing Techniques: Tiered


Description: Set prices at different price points for different levels of features Example: Big O Tires offers Good, Better, and Best oil change packages

Sample Calculations for Acme Example:

Acme LUX LED light bulbs in 3 tiers:

Best: Light output of 1700 Lumens, equivalent to 100W incandescent bulb. Price at \$30 Better: Light output at 800 Lumens, equivalent to 60W incandescent bulb. Price at \$20 Good: Light output of 150 Lumens, equivalent of 25W incandescent bulb. Price at \$10

Pricing Techniques: Value-In-Use

Description: Set prices based on product or service's value to the customer Example: Rhino Shield ceramic coating lasts 25 years; "never paint again"

Sample Calculations for Acme Example: See next slide

Pricing Techniques: Value in Use

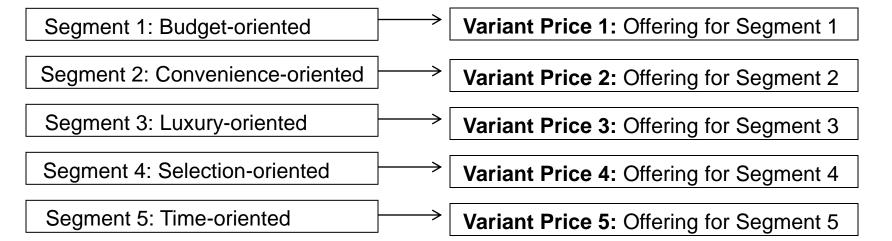
Variable	Data	Description
Existing light bulbs: Price	\$5	Price of existing halogen light bulbs
Existing light bulbs: Life	6 mo.	Life expectancy in difficult conditions
Existing light bulbs: Labor	\$20/ur	nit Labor cost to replace light bulbs
Existing light bulbs: Quantity	100	Quantity of light bulbs to be replaced
Acme LUX light bulbs: Price	VIU	Value in use price we wish to calculate
Acme LUX light bulbs: Life	24 mo	Life expectancy in difficult conditions

Acme LUX light bulbs: Labor \$20/unit Labor cost to replace light bulbs Example

© Stephan Sorger 2016; www.StephanSorger.com; Ch. 8 Price Analytics 1

Pricing Techniques: Value in Use

Annual Light Bulb Cost = Cost for Parts (Light Bulbs) + Cost of Labor (to Replace Light Bulbs)

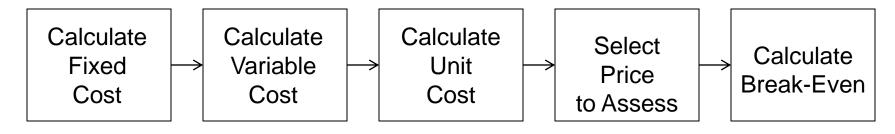

- = 100 light bulbs * \$5/ each * 2 changes/ year + 100 light bulbs * \$20/each * 2 changes/ year
- = \$1,000/ year + \$4,000/ year = \$5,000/ year

VIU = \$80 each for the Acme LUX LED light bulb

\$5,000 = 100 light bulbs * \$VIU/ each * 0.5 changes/ year + 100 light bulbs * \$20/ each * 0.5 changes/ year

Example

Pricing: Variant


Description: Set different prices for different variants, for different segments Example: Volkswagen sells different branded cars to different segments

Sample Calculations for Acme Example:

Target durability-oriented segment; Find out what they expect Durability-oriented segment: Wants vibration resistance and crush resistance Acme LUX LED light bulb excels in vibration and crush

© Stephan Sorger 2016; www.StephanSorger.com; Ch. 8 Price Analytics 1

Pricing Assessment: Break-Even

Acme Example:

<u>Calculate fixed cost</u>: Acme has a fixed cost of \$200,000 for the project <u>Calculate variable cost</u>: Acme spends \$10 per unit on variable cost <u>Calculate unit cost</u>: Unit cost = \$10 + (\$200,000 / 20,000) = \$20 <u>Select price to assess</u>: We expect to charge \$40 per unit <u>Calculate Break-Even</u>: Use the following formula:

Pricing Assessment: NPV Capital Budgeting

Example: Acme wants to know if its proposed Acme LUX LED light bulbs will meet its organizational objective of generating 10% ROI.

- **1. Determine initial investment**: Acme expects an initial investment of \$250,000, which equates to a (- \$250,000) cash flow in year zero.
- 2. Select price to assess: Acme plans to sell the units for \$40 each.
- **3. Forecast unit sales**: Based on sales of similar units, Acme forecasts sales of 2,000 units in year one, 2,500 in year two, and 3,250 in year three.

Pricing Assessment: NPV Capital Budgeting

Example: Acme wants to know if its proposed Acme LUX LED light bulbs will meet its organizational objective of generating 10% ROI.

- **4. Calculate cash flows**: With the price and unit quantities established, we can calculate the cash flow from the units in year one as \$40 * 2,000 = \$80,000, in year two as \$40 * 2,500 = \$100,000, and year three as \$40 * 3,250 = \$130,000.
- 5. Calculate net present value: We enter our information into the NPV equation:

```
NPV = [ (-\$250,000) / (1 + 0.10) ^ 0 ] + [ (\$80,000) / (1 + 0.10) ^ 1 ] + [ (\$100,000) / (1 + 0.10) ^ 2 ] + [ (\$130,000) / (1 + 0.10) ^ 3 ] = \$3,043; NPV > 0
```

Pricing Assessment: IRR Capital Budgeting

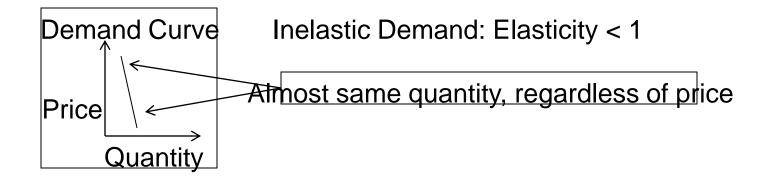
Example: Acme wants to know the internal rate of return (IRR) for its Acme LUX LED bulbs, and if the IRR will meet the minimum internal return of 10%.

- **1. Determine initial investment**:: Acme expects an initial investment of \$250,000, which equates to a (- \$250,000) cash flow in year zero.
- 2. Select price to assess: Acme plans to sell the units for \$40 each.
- **3. Forecast unit sales**: Based on sales of similar units, Acme forecasts sales of 2,000 units in year one, 2,500 in year two, and 3,250 in year three.

Pricing Assessment: IRR Capital Budgeting



Example: Acme wants to know the internal rate of return (IRR) for its Acme LUX LED bulbs, and if the IRR will meet the minimum internal return of 10%.


- **4. Calculate cash flows**: Just as with the net present value model, we calculate the cash flow as \$40 * 2,000 = \$80,000 in year one, \$40 * 2,500 = \$100,000 in year two, and \$40 * 3,250 = \$130,000 in year three.
- **5. Calculate internal rate of return**: Enter the information and set NPV = 0 and solve for IRR NPV = $[(-\$250,000) / (1 + IRR) ^ 0] + [(\$80,000) / (1 + IRR) ^ 1] + [(\$100,000) / (1 + IRR) ^ 2] + [(\$130,000) / (1 + IRR) ^ 3] = 0$ Calculating for IRR, we get 10.6%

Demand Curves: Elastic

Elasticity = (Percentage change in quantity demanded)
(Percentage change in price)

Demand Curves: Inelastic

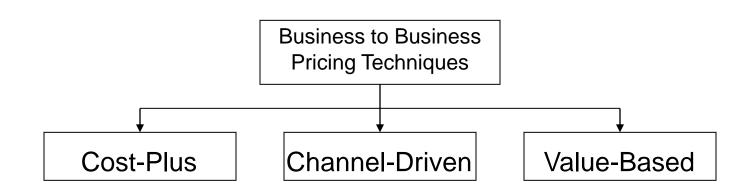
Demand Curves: Elasticity

Price	Quantity		
\$10	5	<	(P1, Q1) = (\$10, 5)
\$20	4		
\$30	3		
\$40	2		
\$50	1	<	(P2, Q2) = (\$50, 1)

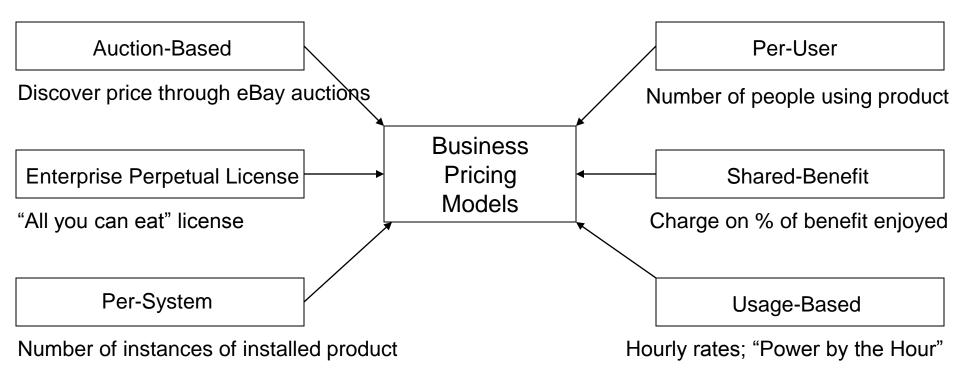
$$= [(Q2 - Q1)/Q1]/[(P2 - P1)/P1]$$
$$= [(1 - 5)/5]/[($50 - $10)/$10] = -0.80/4 = -0.20$$

[©] Stephan Sorger 2016; www.StephanSorger.com; Ch. 8 Price Analytics 1

Demand Curves: Optimal Pricing

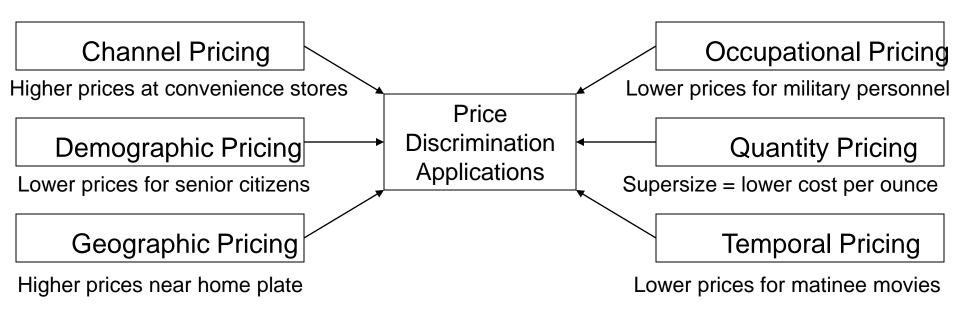

Price	Quantity	Revenue	Cost	Profit
\$10	5	\$10 * 5 = \$50	\$20 * 5 = \$100	\$50 - \$100 = (\$50)
\$20	4	\$20 * 4 = \$80	\$20 * 4 = \$80	\$80 - \$80 = \$0
\$30	3	\$30 * 3 = \$90	\$20 * 3 = \$60	\$90 - \$60 = \$30
\$40	2	\$40 * 2 = \$80	\$20 * 2 = \$40	\$80 - \$40 = \$40 *
\$50	1	\$50 * 1 = \$50	\$20 * 1 = \$20	\$50 - \$20 = \$30

Max. profit at \$40

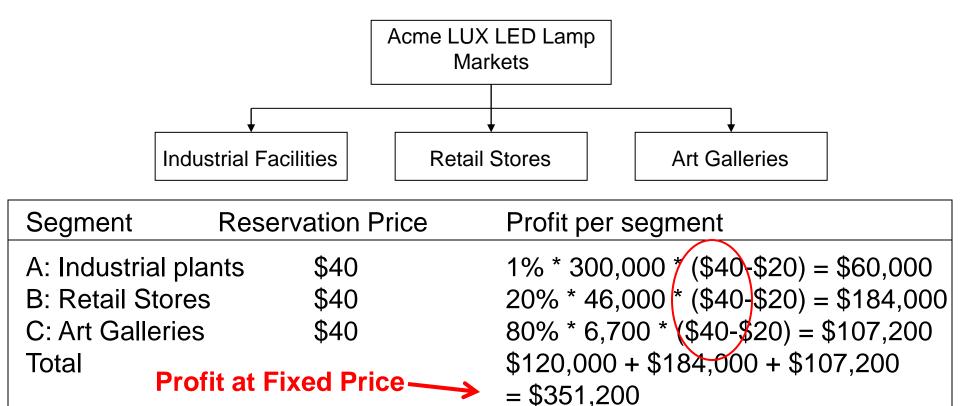

Optimal Pricing Table for Acme LUX LED Light Bulbs

[©] Stephan Sorger 2016; www.StephanSorger.com; Ch. 8 Price Analytics 1

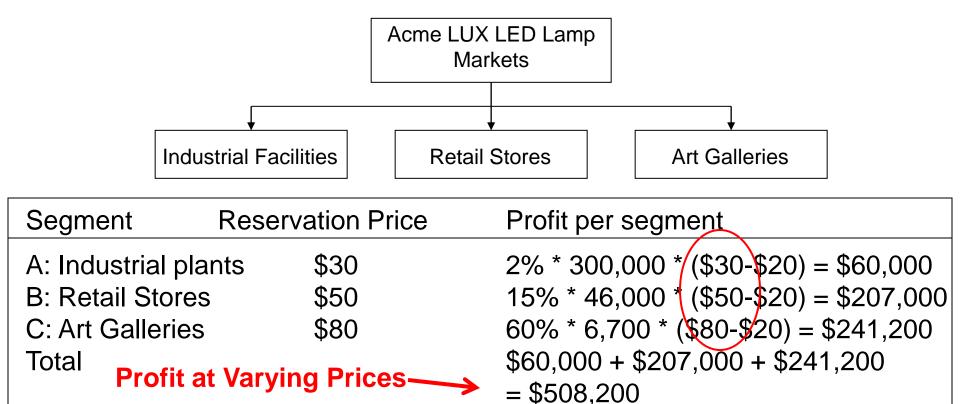
Business Market Pricing Techniques



Business Market Pricing Models


© Stephan Sorger 2016; www.StephanSorger.com; Ch. 8 Price Analytics 1

Price Discrimination


© Stephan Sorger 2016; www.StephanSorger.com; Ch. 8 Price Analytics 1

Price Discrimination

[©] Stephan Sorger 2016; www.StephanSorger.com; Ch. 8 Price Analytics 1

Price Discrimination

[©] Stephan Sorger 2016; www.StephanSorger.com; Ch. 8 Price Analytics 1

Check for Understanding

Topic	Description
Techniques	Identify different pricing techniques and when to apply them
Assessment	Check profit impact of different prices
B2B & B2C	Explain pricing models for consumer and business markets
Discrimination	Define price discrimination and its effect on profitability