# Chapter 10. Promotion Analytics (Estimation and Allocation)

#### Disclaimer:

- All images such as logos, photos, etc. used in this presentation are the property of their respective copyright owners and are used here for educational purposes only
- Some material adapted from: Sorger, Stephan. "Marketing Analytics: Strategic Models and Metrics. Admiral Press. 2013.
  - © Stephan Sorger 2016; <a href="www.StephanSorger.com">www.StephanSorger.com</a>; Ch. 10 Promotion Analytics 1

# **Outline/ Learning Objectives**

| Topic      | Description                                               |
|------------|-----------------------------------------------------------|
| Estimation | Explain how to estimate the total promotion budget        |
| Allocation | Describe how to allocate promotion budget across vehicles |
|            |                                                           |

#### **Promotion**



#### **Promotion**



### **Promotion Analytics: Promotion Budget Estimation**



### **Promotion Budget: Percentage of Sales**



**Description**: Set budget as a percentage of company annual revenue **Example**: LegalZoom estimates that many businesses spend 9-12%

#### **Sample Calculations for Acme Example:**

Acme generated \$100,000 in revenue in the previous year If they apply 10% to promotion, promotion budget: 10% \* \$100,000 = \$10,000

#### **Promotion Budget: Affordable Method**



**Description**: Set budget to whatever the organization can afford **Example**: During recession, many companies slashed marketing spending

#### **Sample Calculations for Acme Example:**

Acme budgets \$20,000 for all expenses After spending \$18,000 on rent, etc., \$2000 left for promotional expenses

# **Promotion Budget: Competitive Parity**



**Description**: Set budget to match what competitors spend **Example**: Big 3 auto makers (GM, Ford, Chrysler) match spending levels

#### **Sample Calculations for Acme Example:**

See next slide

# **Promotion Budget: Competitive Parity**

| Promotion Vehicle               | Cost per Ad | Quantit | y Subtotal                |
|---------------------------------|-------------|---------|---------------------------|
| Print Magazine Ads              | \$1,000     | 30      | \$1,000 * 30 = \$30,000   |
| Radio Commercials               | \$5,000     | 20      | \$5,000 * 30 = \$100,000  |
| Television Commercials \$10,000 |             | 10      | \$10,000 * 10 = \$100,000 |
| Total Spending                  |             |         | \$230,000                 |
|                                 |             |         |                           |

#### **Promotion Budget: Objective and Task**



**Market Share Objective**: Plans to achieve 10% in category of 40 million potential users 10% \* 40 million = 4 million users

Advertising Reach: Plans to reach 80% of potential users 80% \* 40 million = 32 million people

**Trial Rate**: Plans to have 25% of informed prospects try the product 25% \* 32 million = 8 million people

**Customer Count**: 50% who those who try it become customers 50% \* 8 million = 4 million people

Advertising Impressions: Exposures to advertisements 30 impressions over 4 week campaign for 25% trial rate for each 1% of population

**Gross Rating Points**: GRP = 1 exposure to 1% of target population 30 impressions \* 80% = 2400 GRP

Advertising Budget: Cost of Gross Rating Points (CPP)
CPP in Acme's area = \$1800/point; Budget = 24900 \* \$1800 = \$4320,000

© Stephan Sorger 2016; <a href="https://www.StephanSorger.com">www.StephanSorger.com</a>; Ch. 10 Promotion Analytics 1

#### **Promotion Budget: Model-Based Method**

**Description**: Set budget according to decision model

Example: ADBUDG model used for stable, traditional markets

#### **Sample Calculations for Acme Example:**

- -Estimate market share for each of four conditions:
  - -Zero level advertising
  - -Maintenance level advertising
  - -50% boost advertising
  - -Saturation level advertising
- -Build advertising effectiveness curve (model) based on those four points
- -Predict market share given a proposed level of spending

#### **Promotion Allocation**



#### **Promotion Allocation: Linear Optimization Process**



**Vehicle Contribution:** Determine effectiveness of campaigns, based on historical data

Promotion Objective: Declare promotion objective in equation form

**Promotion Constraints:** Specify promotion constraints in equation form

Optimization Model: Execute model

#### **Promotion Allocation: Constraints**



| Promotion Vehicle   | Audience/Ad   | Cost/Ad | Maximum Quantity |
|---------------------|---------------|---------|------------------|
| D: Direct Marketing | 30 Viewers/Ad | \$30/Ad | 30               |
| P: Pay Per Click    | 30 Viewers/Ad | \$40/Ad | 20               |
| S: Social Media     | 40 Viewers/Ad | \$60/Ad | 10               |
|                     |               |         |                  |

Direct Marketing: Emails sent directly to individuals within target market
Pay Per Click: Campaigns displaying ads during relevant Internet searches
Social Media: Paid advertisements on social media platforms

© Stephan Sorger 2016; <a href="www.StephanSorger.com">www.StephanSorger.com</a>; Ch. 10 Promotion Analytics 1

| Linear Optimization Element                                                                                                    | Equation                                                           |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Objective Function                                                                                                             | $Z = 30^*D + 30^*P + 40^*S$                                        |
| Constraint #1: Budget<br>#2: Maximum campaigns/ month: D<br>#3: Maximum campaigns/ month: P<br>#4: Maximum campaigns/ month: S | B = 30*D + 40*P + 60*S <= \$2,000<br>D <= 30<br>P <= 20<br>S <= 10 |

# Objective Function

Z = 30 \* D + 30 \* P + 40 \* S

The equation applies the following variables:

Z = Our objective, in this case the total number of impressions from all promotion vehicles. D = Quantity of direct marketing campaigns to run, given that each direct marketing campaign

results in 30 viewers per advertisement.

P = Quantity of pay per click campaigns to run, with 30 viewers per campaign.

S = Quantity of social media campaigns to run, with 40 viewers per campaign

| Linear Optimization Element                                                                                           | Equation                                                           |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Objective Function                                                                                                    | $Z = 30^{\circ}D + 30^{\circ}P + 40^{\circ}S$                      |
| Constraint #1: Budget #2: Maximum campaigns/ month: D #3: Maximum campaigns/ month: P #4: Maximum campaigns/ month: S | B = 30*D + 40*P + 60*S <= \$2,000<br>D <= 30<br>P <= 20<br>S <= 10 |

# Promotion Constraints

 $B = 30 * D + 40 * P + 60 * S \le $2,000$ 

The equation applies the following variables:

- B = Our monthly budget
- D = Quantity of direct marketing campaigns, which cost \$30 each to run.
- P = Quantity of pay per click campaigns, which cost \$40 each to run.
- Quality of pay per click campaigns, which cost \$40 each to full.
- S = Quantity of social media campaigns, which cost \$60 each to run.
- ≤ = Inequality sign, indicating that we may not exceed our maximum budget.

| Linear Optimization Element                                                           | Equation                                                |
|---------------------------------------------------------------------------------------|---------------------------------------------------------|
| Objective Function                                                                    | $Z = 30^*D + 30^*P + 40^*S$                             |
| Constraint #1: Budget #2: Maximum campaigns/ month: D #3: Maximum campaigns/ month: P | B = 30*D + 40*P + 60*S <= \$2,000<br>D <= 30<br>P <= 20 |
| #4: Maximum campaigns/ month: S                                                       | S <= 10                                                 |

#### **Promotion Constraints**

- **D** ≤ **30**: Cannot exceed 30 direct marketing campaigns per month
- P ≤ 20: Cannot exceed 20 pay per click campaigns per month
- S ≤ 10: Cannot exceed 10 social media campaigns per month

#### **Promotion Allocation: Optimization Model**



### **Promotion Allocation: Setup**



#### **Promotion Allocation: Execution**



#### **Promotion Allocation: Execution**



© Stephan Sorger 2016; <a href="https://www.StephanSorger.com">www.StephanSorger.com</a>; Ch. 10 Promotion Analytics 1

#### **Promotion Allocation: Execution**



<sup>©</sup> Stephan Sorger 2016; <a href="https://www.StephanSorger.com">www.StephanSorger.com</a>; Ch. 10 Promotion Analytics 1

# **Promotion Allocation: Interpretation**

Promotion Vehicle

| 1 TOTTIONOTT VETTICIE                                | Oulver Nesult                               | COSI/AU                       | Total Gost per Verlicie |
|------------------------------------------------------|---------------------------------------------|-------------------------------|-------------------------|
| D: Direct Marketing P: Pay Per Click S: Social Media | 30 (30 max.)<br>20 (20 max.)<br>5 (10 max.) | \$30/Ad<br>\$40/Ad<br>\$60/Ad | \$900<br>\$800<br>\$300 |
| Total Spending                                       |                                             |                               | \$2,000                 |
| Solver Results: Summary                              |                                             |                               |                         |

Cost/Ad

Total Cost per Vehicle

Solver Result

| Promotion Vehicle   | Solver Result | Max. Allowable | Status      |
|---------------------|---------------|----------------|-------------|
| D: Direct Marketing | 30            | 30             | Binding     |
| P: Pay Per Click    | 20            | 20             | Binding     |
| S: Social Media     | 5             | 10             | Not Binding |
| Budget              | \$2,000       | \$2,0000       | Binding     |
|                     |               |                |             |

Solver Results: Constraints

### **Check for Understanding**

| Topic      | Description                                               |
|------------|-----------------------------------------------------------|
| Estimation | Explain how to estimate the total promotion budget        |
| Allocation | Describe how to allocate promotion budget across vehicles |
|            |                                                           |